翻訳と辞書
Words near each other
・ Bogside railway station
・ Bogside, North Lanarkshire
・ Bogomil Pavlov
・ Bogomila
・ Bogomila Falls
・ Bogomilism
・ BogoMips
・ Bogomir Korsov
・ Bogomir Magajna
・ Bogomol'nyi–Prasad–Sommerfield bound
・ Bogomol'nyi–Prasad–Sommerfield state
・ Bogomolets
・ Bogomolets National Medical University
・ Bogomolny equations
・ Bogomolov
Bogomolov conjecture
・ Bogomolov–Miyaoka–Yau inequality
・ Bogon
・ Bogon filtering
・ Bogon, Kale
・ Bogon, Shwegu
・ Bogonam
・ Bogonam-Foulbé
・ Bogong
・ Bogong High Plains
・ Bogong moth
・ Bogoniowice
・ Bogonos River
・ Bogor
・ Bogor Agricultural University


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bogomolov conjecture : ウィキペディア英語版
Bogomolov conjecture
In mathematics, the Bogomolov conjecture, named for Fedor Bogomolov, is the following statement:
Let ''C'' be an algebraic curve of genus ''g'' at least two defined over a number field ''K'', let \overline K denote the algebraic closure of ''K'', fix an embedding of ''C'' into its Jacobian variety ''J'', and let \hat h denote the Néron-Tate height on ''J'' associated to an ample symmetric divisor. Then there exists an \epsilon > 0 such that the set
: \(P) < \epsilon\}   is finite.
Since \hat h(P)=0 if and only if ''P'' is a torsion point, the Bogomolov conjecture generalises the Manin-Mumford conjecture. The original Bogomolov conjecture was proved by Emmanuel Ullmo and Shou-Wu Zhang in 1998.〔.〕
Zhang proved the following generalization:
Let ''A'' be an abelian variety defined over ''K'', and let \hat h be the Néron-Tate height on ''A'' associated to an ample symmetric divisor. A subvariety X\subset A is called a ''torsion subvariety'' if it is the translate of an abelian subvariety of ''A'' by a torsion point. If ''X'' is not a torsion subvariety, then there is an \epsilon > 0 such that the set
: \(P) < \epsilon\}   is not Zariski dense in ''A''.
==References==

*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bogomolov conjecture」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.